Common Python Problems - [3] Float Data Types

By JoeVu, at: Jan. 12, 2023, 2:30 p.m.

Estimated Reading Time: __READING_TIME__ minutes

Common Python Problems - [3] Float Data Types
Common Python Problems - [3] Float Data Types

1. Floating Point Arithmetic Inaccuracies

 

Example 1

 

x = 1/10
y = 1/5
z = x + y
print(z)  # expected output is 0.3

 

Output

 

0.30000000000000004

 

Solution: Using the decimal module in Python, we can accurately represent decimal values and avoid floating point inaccuracies. 

 

from decimal import Decimal
x = Decimal("1") / Decimal("10")
y = Decimal("1") / Decimal("5")
z = x + y
print(z)  # expected output is 0.3

 

Output

 

0.3

 

2. Overflow Errors

 

Example 1

 

An example of a float overflow error in Python can be seen below:

 

num1 = 9e309
num2 = 2
result = num1 * num2
print(result)

 

Output

 

inf

 

Solution: Python will raise an OverflowError when the value of a float is too large. To avoid this error, you can use the Decimal module to handle large numbers and prevent float overflow errors. For example:

 

num1 = Decimal("9e309")
num2 = Decimal(2)
result = num1 * num2
print(result)

 

Output

 

1.8E+310

 

3. Rounding Errors

 

Example 1

 

# We are trying to calculate 0.1 + 0.2
x = 1/10
y = 1/5
z = x + y
print(z)

 

Output

 

0.30000000000000004

 

Solution:We can use the round() function to round off the result

 

x = 1/10
y = 1/5
z = x + y
rounded_z = round(z, 2)
print(rounded_z)

 

Output

 

0.3
Tag list:
- Python
- Mistake
- Problem
- Float Data Type
- Decimal

Subscribe

Subscribe to our newsletter and never miss out lastest news.